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France Dacar, Jožef Stefan Institute

July 11, 2007



d’Alembert’s Lemma for Polynomials

and The Fundamental Theorem of Algebra

The proof of the ‘fundamental theorem of algebra’1 that we shall present is a descen-

dant of the d’Alembert’s proof of this theorem; we can say that it is the d’Alembert’s

proof as it is known today. The proof which d’Alembert gave in 1746 had serious

weaknesses. It was not until the 1870s, when real numbers and continuity were

properly defined, and the basic properties of continuous functions were rigorously

proved, that the gaps in the d’Alembert’s proof were finally filled in. By then, and

also later on, the proof was modified time and again, but the leading idea of the

proof withstood the trials of time; it is simplicity itself:

Let p be a nonconstant polynomial function of a complex variable. Then there

exists a closed disc, centered at the origin, such that for each point z in the disc at

which p(z) �= 0 there exists another point z1 in the disc with |p(z1)| < |p(z)|. The

function |p| attains the minimum value at some point in the disc, and this minimum

value must be 0.

The original proof of the the first statement was unduly complicated and not

entirely correct, while the proof of the second statement rested on quite shaky

grounds; both parts of the proof had to await clarification and consolidation of

the notions of real numbers and continuity of functions before they could be made

rigorous. And here is the entire proof, as we know it now,2 laid out in three stages:

Let p be a nonconstant polynomial function of a complex variable.

(1) d’Alembert’s lemma. If p(a) �= 0, then every neighborhood of the point a

contains a point z such that |p(z)| < |p(a)|.
Proof. The nonconstant polynomial function p(a + w) of the complex variable

w can be represented as

p(a + w) = p(a) + cwm(1 + r(w)) ,

where the constant c is not 0, m � 1 is an integer, and r is a polynomial function

with r(0) = 0. There exists � > 0 such that |cwm| < |p(a)| and |r(w)| < 1 whenever

|w| < �. Let ε be any real number in the range 0 < ε < �. There exists w

with |w| = ε for which cwm = −δp(a), where 0 < δ = |c| εm/ |p(a)| < 1; then

|p(a + w)| = |(1 − δ)p(a) − δp(a) · r(w)| < (1 − δ) |p(a)| + δ |p(a)| = |p(a)|.
(2) Let n � 1 be the degree of the polynomial function p. Since z−np(z) ap-

proaches the nonzero leading coefficient of p when |z| increases to the infinity, there

exists R > 0 such that |p(z)| > |p(0)| for every point z on the circle |z| = R.

(3) Because the closed disc |z| � R is a compact subset of the complex plane,

the continuous function |p|, restricted to the disc, attains the minimum value at

some point z0 in the disc. Because of (2), z0 is an interior point of the disc, and by

d’Alembert’s lemma, |p(z0)| = 0.

1Some mathematical wit commented that it is dubious whether this famous theorem is really
fundamental, that it is not always a theorem because it sometimes serves as a definition, and that
in its classical form it is not of algebra but of analysis.

2A condensed version of the Cauchy’s proof of the Fundamental Theorem of Algebra.
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So this is the proof of the fundamental theorem of algebra in eighteen lines:

short and sweet. However, it is short because it presumes that some things are

already known. Below is a possible list of facts which, taken together, will put the

d’Alembert’s proof on solid grounds:

(1) If p is a polynomial function of complex variable and a is a complex number, then

p(a+w) is a polynomial function of the complex variable w. This seems obvious since

manipulations with polynomials are so familiar to us that we barely notice them

as something that had to be proved correct at some point. The rearrangement of

p(a + w) as a polynomial in w is in fact the main ingredient of algebra in the proof.

(2) Polynomial functions of a complex variable are continuous.

(3) Any complex number of absolute value 1 has a m-th root for any integer m � 1.

(4) Any comples numbers z and w satisfy the equality |zw| = |z| |w| and the in-

equality |z + w| � |z| + |w|.
(5) If n is the degree of a polynomial function p of a complex variable, then z−np(z)

converges to the leading coefficient of p as |z| → ∞.

(6) The absolute value of a complex number is continuous (follows from (4)).

(7) The inclusion map of a subspace into a topological space is continuous (by the

definition of a subspace).

(8) The composition of continuous functions is continuous.

(9) A closed disc in the complex plane, with the topology induced from the topology

of the complex plane, is a compact topological space.

(10) If X is a compact topological space and f : X → R is continuous, then there

exists in X a point x0 such that f(x0) � f(x) for every point x of X.

The fact (3) is easy once we have at our disposal the surjective homomorphism

t �→ eit of the additive group of real numbers onto the multiplicative group of

complex numbers of absolute value 1. But such an assistance of the transcedental

function exp somehow tarnishes the brilliance of the proof; can we get by without it?

In fact we can, and here is how.

It suffices to prove the existence of a m-th root, for each integer m � 1, just for

a complex number u = c + si (c, s ∈ R) on the upper half of the unit circle in the

complex plane. The square root of u is easy to determine:

−1 0 1

(1 + u)/2

u

√
u
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We have
√

u =
1 + u

|1 + u| =
1 + c + si√

2(1 + c)
=

√
1 + c

2
+ i

√
1 − c

2
,

where the first two expressions are undefined at u = −1, while the third is defined

even there and gives a correct result. Since our derivation relied on a geometric

sketch, one may wonder whether the three expressions above really give the square

root of u; to dispel any doubt, just square, say, the third expression.

This disposes of all the 2k-th roots. Since the integer m can be written as

m = 2km′ with m′ odd, and a m′-th root of a 2k-th root of u is a m-th root of u, it

remains to deal with the case when m is odd.

For any point x+yi (x, y ∈ R) on the unit circle, the real component of (x+yi)m

is determined by x :

�(
(x + yi)m

)
= Tm(x) ,

where Tm is the m-th Chebyshev polynomial (of the first kind),

Tm(x) =
∑

0�2k�m

(
m

2k

)
xm−2k(x2 − 1)k .

Since (−1)m = −1 (because m is odd) and 1m = 1, we see that Tm(−1) = −1

and Tm(1) = 1. Suppose we are given a point c + si on the upper half-circle. The

polynomial Tm is continuous, so there exists c′, −1 � c′ � 1, at which Tm(c ′) = c;

put s′ =
√

1 − c ′2. We have either (c′ + s′i)m = c + si, or (c ′ + s′i)m = c − si in

which case (c ′ − s′i)m = c + si. Done.

d’Alembert’s Lemma for Holomorphic Functions

and The Maximum Modulus Theorem

The proof of d’Alembert’s Lemma easily adapts to arbitrary holomorphic functions.

The Maximum Modulus Theorem is a straightforward corollary of the generalized

Lemma.

d’Alembert’s Lemma for Holomorphic Functions. Let Ω be a region

(connected open subset of the complex plane). Let f be a nonconstant holomorphic

function on Ω, let a be a point in Ω and V any neighborhood of a in Ω. Then V

contains a point z+ at which |f(z+)| > |f(a)|, and if f(a) �= 0, V contains a point

z− at which |f(z−)| < |f(a)|.
Proof. The nonconstant holomorphic function f(a + w) of the complex variable

w (varying in the region Ω − a) can be represented as

f(a + w) = f(a) + cwm(1 + g(w)) ,

where c is a nonzero constant, m � 1 is an integer, and g is a holomorphic function

on Ω− a with g(0) = 0. If f(a) = 0, then f(a + w) �= 0 for all small enough w �= 0,

so there certainly exists a point z+ ∈ V at which |f(z+)| > 0 = |f(a)|. From

now on assume that f(a) �= 0. There exists � > 0 such that for every w with
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|w| < � we have a + w ∈ V , |cwm| < |f(a)|, and |g(w)| < 1. Let ε be any real

number in the range 0 < ε < �. There exist w+ and w− with |w+| = |w−| = ε for

which cwm
+ = δf(a) and cwm

− = −δf(a), where 0 < δ = |c| εm/ |f(a)| < 1. Then

|f(a + w+)| = |(1 + δ)f(a) + δf(a) · g(w)| > (1 + δ) |f(a)| − δ |f(a)| = |f(a)|, and

|f(a + w−)| = |(1 − δ)f(a) − δf(a) · g(w)| < (1 − δ) |f(a)| + δ |f(a)| = |f(a)|.
The foregoing proof can be vividly retold as a story (a very short one) of a man

walking his dog round a tree. The man, at f(a) + cwm, is trodding a circular

path of radius |c| εm centered on the tree at f(a). He has the dog, at f(a + w),

on an adjustable leash of the length |cwmg(w)| which is always shorter that |c| εm.

The man walks round the tree m times, and during the walk he passes m times

0

f(a)

f(a) + cwm
− = (1 − δ)f(a)

f(a + w−)

(1 + δ)f(a) = f(a) + cwm
+

f(a + w+)

|c| εm

through each of the points (1+δ)f(a) = f(a)+cwm
+ and = (1−δ)f(a) = f(a)+cwm

− .

Whenever the man is at the point (1 + δ)f(a), the dog is farther from the origin

than the tree, and whenever he is at the point (1 − δ)f(a), the dog is closer to the

origin than the tree.

The Maximum Modulus Theorem. Let f be a nonconstant holomorphic

function on a region Ω, and K a nonempty compact subset of Ω. Then

|f(a)| < max
z∈∂K

|f(z)|

for every point a in the interior of K.

Proof. The continuous function |f(z)| attains its maximum value at some point

z0 ∈ K, which is not an interior point of K, by d’Alembert’s Lemma; thus z0 ∈ ∂K,

and |f(z0)| = maxz∈K |f(z)| = maxz∈∂K |f(z)|. If a is an interior point of K, there

exists, by d’Alembert’s Lemma, another interior point b of K with |f(b)| > |f(a)|,
and hence |f(a)| < |f(b)| � |f(z0)| = maxz∈∂K |f(z)|.

The following proposition about ‘localization’ of zeros of a holomorphic function

is a straight rip-off of the final stage in the proof of the fundamental theorem of

algebra.
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Proposition. Let f be a holomorphic function on an open subset Ω of the

complex plane, and let K be a compact subset of Ω. Suppose that K contains an

interior point a such that

|f(a)| < |f(z)| for every z ∈ ∂K .

If U is the connected component of the interior of K containing the point a, then f

has a zero in U .

Proof. First assume that Ω is connected. Since the compact set K is not empty,

its boundary is also not empty, thus |f(a)| < |f(z)| for some z, so f is not constant.

The continuous function |f(z)| attains its minimum value at some point z0 ∈ K. The

point a demonstrates that z0 /∈ ∂K, so z0 is interior to K; but then, by d’Alembert’s

Lemma, f(z0) = 0.

Now assume that Ω is just an open set in the complex plane. Let W be the

connected component of Ω that contains the point a. Since the closure U ⊆ K ⊆ W

is connected and contains point a, it is contained in W . The boundary ∂U is

contained in ∂K because U is a connected component of the interior of K, hence U

is the interior of U . Now apply the first part of the proof to W and U in place of Ω

and K.

We can reformulate the proposition in terms of the surface diagram of the func-

tion |f | over Ω: every sinkhole in the surface goes all the way down to at least one

zero of f . Thus by observing the surface diagram of a holomorphic function we can

spot approximate locations of its zeros. This can be useful even with polynomials.

Let us try this on some interesting polynomial, with many zeros. We choose the

“look and say” polynomial:3

p(x) = x71 − x69 − 2x68 − x67 + 2x66 + 2x65 + x64 − x63 − x62 − x61 − x60

− x59 + 2x58 + 5x57 + 3x56 − 2x55 − 10x54 − 3x53 − 2x52 + 6x51

+ 6x50 + x49 + 9x48 − 3x47 − 7x46 − 8x45 − 8x44 + 10x43 + 6x42

+ 8x41 − 5x40 − 12x39 + 7x38 − 7x37 + 7x36 + x35 − 3x34 + 10x33

+ x32 − 6x31 − 2x30 − 10x29 − 3x28 + 2x27 + 9x26 − 3x25 + 14x24

− 8x23 − 7x21 + 9x20 + 3x19 − 4x18 − 10x17 − 7x16 + 12x15 + 7x14

+ 2x13 − 12x12 − 4x11 − 2x10 + 5x9 + x7 − 7x6 + 7x5 − 4x4 + 12x3

− 6x2 + 3x − 6 .

Its unique positive real zero λ = 1.303577269 . . . is known as Conway’s constant.

Here is the surface diagram of |p(x + yi)| over the rectangle −1.15 � x � 1.35,

0 � y � 1.1, cut off at the elevation 10:

3See http://en.wikipedia.org/wiki/Look-and-say-sequence.
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We can clearly see the sinkholes in the low part of the surface, but outside that we

can detect some sinkholes only as small punctures in the cutoff plateau. Of certain

zeros there is no trace. One such zero is λ, and there is good reason for it. The

derivative of p at λ is 1.38 ·108, thus the sinkhole leading to the zero λ has at the

elevation 10 a width 1.45 ·10−7; since the surface is plotted on the grid of 361×159

points, it is no wonder that no grid point has managed to hit such a tiny target.

We can apply to |p| some strictly increasing function h : R
�0 → R

�0 that pre-

serves 0; the surface of h(|p|) will have sinkholes and zeros precisely where the

surface of |p| has them. A good choice is h(t) = log(1 + t). For small t, h(t) is

approximately t, thus at altitudes less than 0.5, say, the transformed surface will

look almost the same as the original surface. On the other hand, very large values

will be vigorously squashed down by h. Let us look at the surface of log10(1 + |p|),
over the same region as above, this time with the full range of values shown:
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Ha! We got a dimpled surface. Now we can see all the zeros: each dimple is the

opening into a funnel leading down to a simple zero. Look at the zero λ. We see

its funnel in cross-section, down to the altitude 5 or thereabouts, but lower than

that there is nothing. This is quite realistic; at the scale the diagram is drawn, and

at the resolution 300 dots per inch, the diameter of the funnel’s stem below the

altitude 5 is less than one dot.
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